If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2-6x-6=0
a = 40; b = -6; c = -6;
Δ = b2-4ac
Δ = -62-4·40·(-6)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{249}}{2*40}=\frac{6-2\sqrt{249}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{249}}{2*40}=\frac{6+2\sqrt{249}}{80} $
| 11+x-1=7x-2 | | /4n2−6+6n2+3n=−6 | | 3-(1+8x)=26 | | 28-10x=6(x+10) | | 4x12=12-4x | | -6(x+4)=54 | | 4(x+6)+5=235 | | b/3-5=0 | | -6(x=4)=54 | | 7-5(2+x)=-18 | | 68x+400=20x | | 0.5h-3=1.5-3h | | 2x-6+2x-9=13 | | X-3(2x+2=7-3(x+1) | | 22+2(2x+1)=4(3x-2) | | -6+2(1-3x)=-28 | | 5(2x+4)=6(x-4) | | 3(2x-1)+3x=42 | | 4.98-4.7t-2.5t=-8.1t-1.32 | | 3(x+3)=4(x+3) | | 5(5x+3)=25-3(x+1) | | -5+7(x+3)=-19 | | 2(p-6)=p-0.5(6-4p) | | -5=7(x+3)=-19 | | 10+9n=-10+7n | | 0.60x+110=0.80x+80 | | 7+x=9x-1 | | -4(x+9)=12 | | -7.7z=-8.8z-1.76 | | 170=-10+9n | | 25+5t+3t-18=7+8t | | 25-w=221 |